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An experimental and theoretical investigation of the stability of the viscoelastic flow of 
a model Boger fluid between rotating cylinders with an applied pressure gradient is 
presented. In our theoretical study, a linear stability analysis based on the Oldroyd-B 
fluid model which predicts the critical conditions and the structure of the vortex flow 
at the onset of instability is developed. Our results reveal that certain non-axisymmetric 
modes are more unstable than the previously studied axisymmetric mode when the 
shearing by the cylinder rotation is the dominant flow-driving force. This is consistent 
with recent results presented by Beris & Avgousti (1992) on the stability of elastic 
Taylor-Couette flow. On the other hand, the axisymmetric mode is more unstable 
when the pressure gradient becomes dominant. Furthermore, we investigate the 
mechanism of purely elastic Taylor-Dean instability with respect to non-axisymmetric 
disturbances through an examination of the disturbance-energy equation. It is found 
that the mechanism of the elastic Taylor-Dean instability is associated with the 
coupling between the disturbance polymeric stresses due to the azimuthal variation of 
the disturbance flow and the base state velocity gradients. In our experimental study, 
evidence of non-inertial, cellular instabilities in the Taylor-Dean flow of a well- 
characterized polyisobutylene/polybutene Boger fluid is presented. A stationary, 
meridional obstruction is placed between independently rotating, concentric cylinders 
to generate an azimuthal pressure gradient in opposition to the shearing flow. Flow 
visualization experiments near the critical conditions show the transition from purely 
azimuthal flows to secondary vortex flows, and the development of evenly spaced, 
banded vortex structures. The critical wavenumber obtained from spectral image 
analysis of the visualizations, and the critical Deborah number are presented for 
various ratios of the pressure gradient to the shear driving force. Although there is a 
quantitative discrepancy between data and theory, the qualitative trends in the data are 
in agreement with our theoretical predictions. In addition, laser-Doppler velocimetry 
(LDV) measurements show that the instability is a stationary mode when the pressure 
gradient is the dominant flow-driving force, while it is an oscillatory instability when 
the shearing is dominant, again as predicted by the theory. 

1. Introduction 
The stability of the viscous flow between concentric cylinders was first investigated 

experimentally and theoretically by Taylor (1923). He showed, in agreement with 
experiment, that a secondary motion in the form of toroidal vortices occurs when the 
parameter Re(d/R,)i exceeds a value of about 41, where d is the spacing between the 
cylinders, R, is the radius of the inner cylinder, and Re is the Reynolds number for the 
flow in the gap. Taylor assumed both that d/R, 4 1, and that the disturbance flow is 
azimuthally symmetric, however, he did observe non-axisymmetric flows in some of his 
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experiments. To be specific, he noted that as the Reynolds number is increased, the 
axisymmetric Taylor vortices become unstable, and a new flow is established which is 
characterized by travelling azimuthal waves superimposed on the Taylor vortices. The 
linear stability of Taylor-Couette flow with respect to non-axisymmetric disturbances 
was studied by DiPrima (1961). He found that the critical value of the Reynolds 
number increased with the azimuthal wavenumber, but that non-axisymmetric 
disturbances are only slightly more stable than axisymmetric ones. This wavy 
instability was studied experimentally by Coles (1 965). Higher transitions, which occur 
as the Reynolds number is increased beyond the critical value, are discussed in the 
review by DiPrima & Swinney (1981). 

A similar instability occurs in the viscous flow through a curved channel when driven 
by a streamwise pressure gradient. This instability was first studied by Dean (1928) for 
a channel formed by two concentric cylinders, again under the assumptions that the 
spacing d between the cylinders was small relative to the radius of the inner cylinder 
R, and that the disturbance flow was azimuthally symmetric. He found that flow 
instability first occurs when Re(d/R,)d exceeds a value of about 36, where Re is the 
Reynolds number based on the mean velocity of the unperturbed flow. When rotation 
and an azimuthal pressure gradient are both present, the instability of this Taylor-Dean 
flow has some distinctive features which are absent from either limiting case. The latter 
problem was first studied experimentally by Brewster & Nissan (1958), while DiPrima 
analysed theoretically the case where the inner cylinder rotates and the flow is 
simultaneously driven by a uniform circumferential pressure gradient. Raney & Chang 
(1971) investigated the stability of Taylor-Dean flow to non-axisymmetric dis- 
turbances. Their theoretical analysis shows that some non-axisymmetric, oscillatory 
modes can be more unstable than the axisymmetric mode in certain flow parameter 
regimes. This was verified experimentally by Mutabazi et al. (1989, 1990) using a device 
where corotating cylinders mounted horizontally were used to generate Taylor-Dean 
flows by only partially filling the gap with liquid. 

For non-Newtonian fluids, instabilities may arise when the Deborah number, De, 
which represents the importance of elastic forces in the flow, reaches a critical 
magnitude (e.g. Phan-Thien 1983, 1985; Larson, Shaqfeh & Muller 1990; Joo & 
Shaqfeh 199 1, 1992). Under many circumstances inertial instabilities or bifurcations 
are unimportant because the relevant Reynolds numbers are very small. Larson et al. 
(1990) predict a purely elastic instability in the Taylor-Couette flow of an Oldroyd-B 
fluid from a linear stability analysis considering only axisymmetric flows. They have 
found that the instability is time-periodic and experiments show the existence of a non- 
inertial cellular instability. Joo & Shaqfeh (1991, 1992) reported the discovery of a new 
purely elastic instability in the pressure-driven Dean flow of an elastic fluid through a 
curved channel as predicted through an analysis of the flow of an Oldroyd-B model 
fluid. The instability mode was found to be stationary in contrast to the elastic, 
oscillatory instability in Taylor-Couette flow. Again, only axisymmetric instability 
modes were considered by these co-workers. In addition, the mechanism of both the 
purely elastic stationary and oscillatory instabilities in Dean and Taylor-Couette flow 
have been examined elsewhere (Larson et al. 1990; Joo & Shaqfeh 1992). It is found 
that the instability mechanism of the Dean flow, where the instability is a stationary 
mode, is associated with the coupling of the perturbation velocity field to the polymeric 
normal stress gradients in the base flow (Joo & Shaqfeh 1992). In contrast, the 
mechanism for the elastic, oscillatory instability in Taylor-Couette flow involves the 
coupling between the disturbance polymeric stresses and the base state velocity 
gradients (Larson et al. 1990). 
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A purely elastic instability in Taylor-Dean flow which combines cylinder rotation 
and a pressure gradient as flow-driving forces in flow through a curved channel was 
also reported by Joo & Shaqfeh (1992). The linear stability results reveal that the 
instability is a stationary mode when the pressure gradient becomes the dominant flow- 
driving force, while it is an oscillatory instability when the shearing by the cylinder 
rotation is dominant. In addition, it is found that the direction of the pressure gradient 
controls the characteristics of the instability : a pressure gradient applied along the 
cylinder rotation destabilizes the flow, while if applied against the rotation, the flow is 
substantially stabilized. 

As mentioned above, in these previous studies (Larson et al. 1990; Joo & Shaqfeh 
1991, 1992) of the purely elastic instabilities in Taylor-Couette and Taylor-Dean 
flows, only axisymmetric disturbance flows are considered. Although the experiments 
in Taylor-Couette flow by Larson et al. (1992) show the existence of a non-inertial 
secondary flow, their theoretical analysis including only axisymmetric disturbances 
overpredicts the critical Deborah number. Recently, Beris & Avgousti (1992) have 
reported that non-axisymmetric disturbances are more unstable than the axisymmetric 
disturbances in the viscoelastic Taylor-Couette flow of a Maxwell fluid. 

The purpose of the present communication is twofold. First, we examine the purely 
elastic instability in the Taylor-Dean flow of an Oldroyd-B fluid model with respect to 
non-axisymmetric disturbances. The critical conditions and the structure of the vortex 
flow at the onset of the instability for a complete series of Taylor-Dean flows from 
Taylor-Couette flow (shear dominant flow) to Dean flow (pressure dominant flow) are 
presented. Our results reveal that certain non-axisymmetric modes are more unstable 
than the axisymmetric mode when the shearing by the cylinder rotation is the dominant 
flow-driving force, while the axisymmetric mode is more unstable when the pressure 
gradient becomes dominant. Furthermore, we investigate the mechanism of purely 
elastic Taylor-Dean instability with respect to non-axisymmetric disturbances through 
an examination of the disturbance-energy equation. A new mechanism of the 
instability is uncovered : when the disturbances are non-axisymmetric, it is found that 
the mechanism of the elastic Taylor-Dean instability is associated with the coupling 
between the disturbance polymeric stresses due to the azimuthal variation of the 
disturbance flow and the base state velocity gradients. This coupling which arises from 
the coupling of the azimuthal variation of the radial perturbation velocity to the 
azimuthal normal stress in the base state is absent when the disturbances flows are 
axisymmetric. In addition, we relax the small-gap assumption and examine finite-gap 
effects on the stability of elastic Taylor-Dean flows. It is demonstrated that all flows 
are stabilized by finite-gap effects. Calculations for Taylor-Couette flow are presented 
for the gap ratios in the range 0 < d/R,  < 0.35. These are then compared with the 
previous experimental results by Larson et al. (1990) and Shaqfeh, Muller & Larson 
(1992). The effects of the gap width in Dean flow are also presented. 

After examining the linear stability of Taylor-Dean flow with respect to non- 
axisymmetric disturbances, we turn to the second purpose of this communication in 
which an experimental investigation of non-inertial, cellular instabilities in the 
Taylor-Dean flow of a well-characterized polyisobutylene/polybutene Boger fluid is 
presented. A stationary, meridional obstruction is placed between independently 
rotating, concentric cylinders to generate an azimuthal pressure gradient in opposition 
to the shearing flow. By changing the ratio of the rotation rate of the inner cylinder to 
the outer cylinder, a complete series of Taylor-Dean flows are examined. Flow- 
visualization experiments near the critical conditions show the transition from purely 
azimuthal flows to secondary vortex flows, and the development of evenly spaced, 
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FIGURE 1 .  Flow driving forces in (a) Taylor-Couette flow (cylinder rotation), (b) Dean flow (an 
azimuthal pressure gradient), and (c) Taylor-Dean flow (cylinder rotation and an azimuthal pressure 
gradient). 

banded vortex structures. The critical wavenumber obtained from spectral image 
analysis, and the critical Deborah number are presented for various ratios of the 
pressure gradient to the shear driving force. Although there is a quantitative 
discrepancy between data and theory, the qualitative trends in the data are in 
agreement with our theoretical predictions. Finally, laser-Doppler velocimetry (LDV) 
measurements show that the instability is a stationary mode when the pressure gradient 
becomes the dominant flow-driving force, while it is an oscillatory instability when the 
shearing is dominant as predicted by the theory. 

2. Theory 
2.1. Development of the linear stability equations 

We consider the flow of a fluid between two concentric cylindrical surfaces. The flow 
is driven by the rotation of the cylindrical surfaces or a constant pressure gradient 
acting around the cylinders or both (see figure 1). 

The linear growth of the disturbance can be determined from linear stability 
equations derivable from the continuity, momentum conservation and a suitable 
constitutive equation. We choose the Oldroyd-B constitutive equation because of its 
usefulness in describing the flow behaviour of even highly elastic flows. The Oldroyd- 
B model can be derived from a molecular theory in which the polymer molecules are 
modelled as non-interacting Hookean elastic dumb-bells immersed in a Newtonian 
solvent (see Bird et al. 1987). It has previously been shown that the Oldroyd-B 
constitutive equation provides a useful description of the rheological behaviour of 
dilute polymer solutions in shearing flow over a range of shear rate (e.g. Boger 
1977/1978; Gupta, Sridhar & Ryan 1983; Mackay & Boger 1987). We also note that 
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Quinzani et al. (1991) have discussed the rheology of Boger fluids in great detail and 
have remarked on the limitations of characterizing the fluid rheology with a multimode 
Oldroyd-B model. We apply the same methodology as discussed in our previous 
publication (Joo & Shaqfeh 1992) where a detailed development of the linear stability 
equations for axisymmetric disturbances can be found. 

Since we shall show that not only the ratio of the applied pressure gradient to the 
shear driving force but also the direction of these two driving forces control the 
characteristics of the instability, we shall distinguish between the following two cases : 
a flow where the shear rate due to the rotation of the cylinders is positive 
($ = (52, - 52,)/52, > 0 where Q1 and 52, are the rotation rates of the inner and outer 
cylinder, respectively, see figure l), and a flow where it is negative ($ < 0). In both 
cases, we assume the direction of the azimuthal pressure gradient is positive, i.e. 
aP/aO > 0, where O denotes an azimuthal coordinate. In $4.2 we present a Taylor-Dean 
flow apparatus which generates a positive pressure gradient, and changing the ratio of 
the rotation rate of the inner cylinder to the outer cylinder can alter not only the shear 
rate due to the shearing force but also the magnitude of the pressure gradient. In this 
section, we shall restrict our discussion to the case when the gap d = R, - R, is small 
compared to either R, or R,, i.e. E = d/R, 4 1. The effects of finite gap will be presented 
in 93. 

With Cauchy's equations of motion, the Oldroyd-B constitutive equation, and the 
boundary conditions, the velocity distribution describing the basic flow for E 6 1 can 
be written as the sum of two terms : a simple shearing flow due to the cylinder rotation, 
and a Poiseuille flow due to the azimuthal pressure gradient, namely (see Joo & 
Shaqfeh (1992), 

where [ = - (aP/aO) d2/2yt R; 52, represents the relative importance of the pressure 
gradient to the cylinder rotation as a flow driving force, and vt is the shear viscosity. 
In addition, x = ( r -R1) / (R2-  R,) is the gap variable, and y denotes a streamwise 
direction or azimuthal coordinate. 

For p > 0, we have from (1) the following approximate dimensionless expression for 
the velocity gradient (made dimensionless with the product of the gap d and the 
maximum shear rate across the gap, y,,, = (52, d/Rl) (- [+ /3)) : 

0; = -6(1-2x)+(1-6), (2) 
where 6 = [/([--/?), and the prime refers to a derivative with respect to the gap variable 
Y 
A .  

For p < 0, we have a similar expression for the velocity gradient (made dimensionless 
with the product of the gap d and the maximum shear rate, y,,, = (52, d/R,) (- c-/3)) : 

zl; = -S*(1-2x)+(S*-l), ( 3 )  
where 6*, which is analogous to 6, is defined as [/([+/3). 

Shaqfeh 1991) again for E 4 1 : 
For both cases, we have the following expressions for the stress fields (see Joo & 

(4) 
(5 )  

r;o z riy = v;, 

r:o z r;y = 2De(l- S)(v;),, 

where S is the ratio of solvent to total shear viscosity, i.e. vs/vt .  In (4t(5), the stresses 
are made dimensionless with a characteristic stress chosen as the product of the shear 
viscosity and the maximum shear rate across the gap, vt y,,,. The Deborah number in 

2-2 
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(4) is defined as the product of the fluid relaxation time h and the maximum shear rate, 

(7) 
R 

De = 1 ( - &-/I) h and for P < 0. 
& 

For the limiting cases, 6 = 6* = 0 and S = 6" = 1, (2)-(5) become the expressions for 
the velocity and stress fields for Taylor-Couette flow and Dean flow, respectively (Joo 
& Shaqfeh 1992). 

We then consider the evolution of small normal mode disturbances applied to these 
base states. For general (i.e. axisymmetric and non-axisymmetric) disturbances, the 
velocities and stresses become 

21 = (O,z$, O)+(U(r), V(r),  W(r))exp(i(m+nB-wt)), (8) 

(9) 

We shall be considering the temporal stability of the flow, so w is in general a complex 
frequency and o is the real axial wavenumber. Thus, this formulation allows for the 
consideration of overstable as well as stationary modes. In (8) and (9), n is the 
azimuthal wavenumber, which is an integer (positive, negative, or zero) owing to the 
periodicity in a Couette geometry. For the laboratory simulation of the Taylor-Dean 
flow, the flow regime is separated by a block (see figure 12). Under these conditions, 
the perturbations need not be periodic in the azimuthal direction, and one needs to solve 
for a general class of non-axisymmetric perturbations which satisfy the requisite 
boundary conditions in 8. However, we shall consider only periodic disturbances in our 
analysis, realizing that these do not exactly model our experimental conditions. Note 
that only periodic disturbances have been considered in the analysis of inertial 
Taylor-Dean instabilities by Raney & Chang (1971). It follows from (8) and (9) tht the 
disturbances become axisymmetric, if n = 0. 

Substitution of the disturbances (8) and (9) into Cauchy's equations of motion, the 
Oldroyd-B constitutive equation, and the continuity equation, followed by lin- 
earization allows us to derive a set of linear stability equations. Setting the Reynolds 
number equal to zero in order to examine only elastically driven instabilities, and 
simplifying, these equations can then be reduced to an eigenvalue problem for the 
complex frequency w (made dimensionless with the characteristic relaxation time A) : 

1 + 0) (1 - S) (ur)3 u+ 2a2&De9( 1 + 9) (1 - S )  vr V ,  
S+9(1 - S )  S + 9 ( 1  - S )  

+ 
2ina2c2DeZ9(2 + 9) (1 - S) 

S+9(1 - S )  
( u p  V = 0, + 

2n2me39q1- S )  (v& U" + 2v; U' -a"; U )  - ( v 3 3  u De W( 1 - S )  
S+ q 1 -  S )  s+q1 - S )  

1/"-a2V+ 

in&De2 gZ( 1 - S) 
[2(v&)2 U' + 3v& ?I; U ]  

+ S+9(1-S) 
ineDe 9( 1 - S )  
S+9(1 - S )  

- [2v& V' + v; V ]  = 0, 
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with the boundary conditions : 

V = U = U ' = O  at x=O,  x = l .  (12) 

In (10)-(1 1) a: is the axial wavenumber of the disturbance made dimensionless with the 
gap, and 9 = 1/(1 - i o + ~ i n  Devi). Note that (10) and (11) constitute the small-gap 
eigenvalue problem in the sense that we have retained terms of O(t2De3) and larger, 
keeping in mind that De - O(E&), when E << 1 for instability. Strictly speaking then, 
terms of O(e2De3) are small like O(E~) and in the limit E + O  but &De - 0(1) all modes 
have the same stability characteristics (i.e. critical De and a) as reported by Joo & 
Shaqfeh (1992) and given by (14) and (15). However, we find that for any reasonable 
gap size (E > the terms of O(t2De3) are important. In addition, only these terms 
distinguish the stability of modes with different azimuthal symmetry, i.e. different 
values of n. This will be demonstrated in our numerical results in $3. For a detailed 
derivation of (lOt(l1) reference should be made elsewhere (see Joo 1993). 

For the axisymmetric modes, (11) and the boundary conditions (12) imply that 

9'De( 1 - S )  
V = -  v; u. 

S + 9 ( 1  - S )  (13) 

This result allows us to eliminate Vfrom (10). Thus, we recover the eigenvalue problem 
governing the linear growth of small axisymmetric disturbances for Taylor-Dean flow 
in the narrow gap limit (see Joo & Shaqfeh 1992) 

U "I' - 2 2  U" + a4 U + EDe2 a2A l(W) (vr) U' - EDe2 a' A2(G)  v: v r  U = 0 3 (14) 

together with the boundary conditions 

U = U ' = O  at x = O ,  x =  1. (15) 

In (14), A ,  and A ,  are related to the important dimensionless variables via the 
expressions 

A ,  = 29'( 1 - S )  

A ,  = 2 9 (  1 - S )  

2.2. Neutral stability curves 
An orthogonal shooting solution method was employed to explicitly solve the 
eigenvalue problem (10)-(12). This method has been applied to other stability 
problems and for details reference should be made to the appropriate publications 
(Keller 1961 ; Conte 1966; Shaqfeh & Acrivos 1987). In this scheme, a standard fourth- 
order Runge-Kutta integrator with constant step size was used, and a complex secant 
method was employed to iterate and obtain convergence on the eigenvalue. Note that 
in the present application, it was found that the eigenvalue problem is fairly stiff and 
that at least two orthonormalizations are required to retain five-digit numerical 
accuracy in the solutions during integration with the step size 0.01. The number of 
orthonormalizations increases as either axial or azimuthal wavenumber of the 
eigenmode increases. For some cases (0.4 < 6" d 0.6), the eigenvalue problem was 
found to be extremely stiff owing to the large values of the axial wavenumber and the 
Deborah number near the stability boundary, and thus the five-digit accuracy 
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FIGURE 2. Neutral curves De,, us. a for (a) Taylor-Couette flow, and (b) Dean flow. The calculations 
for both axisymmetric (n = 0) and non-axisymmetric (n = 1, n = 2, n = 3 and n = 4) modes are 
shown. 

mentioned above was not obtained even with increasing orthonormalizations and 
reducing the integration step size. For obtaining precise values of the critical conditions 
under this very limited range of conditions, one must either use an alternative 
numerical method or employ a large wavenumber analysis. We also scanned the 
complex frequency domain at the critical wavenumber and Deborah number to 
determine the set of eigenmodes and eigenvalues for all Taylor-Dean instabilities (Joo 
1993). By this mode-scanning procedure, we can also determine the most unstable 
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/3 n=O n = l  n = 2  n = 3  n = 4  

-1 k0.779 0.100 0.632 1.210 1.570 

co f0.779 1.968 3.753 6.890 12.58 

TABLE 1. Frequency of oscillation in the unstable modes of Taylor-Couette flow for various 
azimuthal wavenumbers 

-2 k0.779 -0.936 -1.564 -2.843 -5.506 

mode and further understand the structure of these eigenvalue problems (see Joo & 
Shaqfeh 1992; Joo 1993). Below, we present the characteristics of the purely elastic 
instability with respect to non-axisymmetric disturbances in Taylor-Dean flow. This 
includes the neutral stability curves and the vortex structure at the onset of instability. 

In our previous publication (Joo & Shaqfeh 1992), we presented the characteristics 
of the instability with respect to axisymmetric disturbances in Taylor-Dean flow. We 
found that a pressure gradient applied along the cylinder rotation destabilizes the flow, 
while if applied against the cylinder rotation, the flow is substantially stabilized. In this 
section, we shall compare these previous results for axisymmetric disturbances with the 
present results for non-axisymmetric disturbances. In what follows, the ratio of solvent 
to total viscosity S and the dimensionless gap E are chosen to represent our 
experimental conditions, 0.8 and 0.13, respectively (see $4). The effects of gap width 
and solvent ratio will be discussed in $3. First, we present the neutral curves for the 
limiting cases, Taylor-Couette flow (6 = S* = 0) and Dean flow (S = 6* = 1). In figure 
2(a), we plot the neutral curves, De us. a, for the purely elastic Taylor-Couette flow at 
various values of the azimuthal wavenumber n. In the region below each curve, the 
corresponding mode is stable, while it is unstable in the region above. It is observed 
that the critical values of the Deborah number (shown with the symbols 0 in figure 
2a) decrease first, and then increase as the azimuthal number n is increased. Thus, the 
non-axisymmetric modes, n = 1, n = 2, and n = 3 are the more unstable than the 
axisymmetric mode (n = 0), and the non-axisymmetric mode with n = 1 is the most 
unstable one. Note that for Taylor-Couette flow in the small-gap limit, both 
axisymmetric and non-axisymmetric modes are oscillatory, and that the critical 
Deborah number and the critical wavenumber of each mode do not depend on the 
relative rotation rate between inner and outer cylinders p. However, it is found that the 
frequency of oscillation of the non-axisymmetric modes depend on p, while that of the 
axisymmetric mode does not depend on ,4 as shown in table 1. Furthermore, the 
frequency for the non-axisymmetric modes monotonically increases as wavenumber is 
increased. For two Taylor-Couette flows at different values of p we have the same 
eigenvalue 9, since the azimuthal velocity in the base state (vi) appears in the final 
eigenvalue problem (10)-(12) only via 9 = 1/(1 -iis +&inDevi). Therefore, the critical 
Deborah number and the critical wavenumber for Taylor-Couette flow do not depend 
on the relative rotation rate /?, and the two frequencies of oscillation for Taylor-Couette 
flows at two different values of ,8 have the following relation: 

is, - w Z  = neDe[(vi), - (vi),]. 

This result will be used to examine the nature of the instability in $5 .  Finally, we note 
that the critical wavenumber a, decreases first, and then increases as the azimuthal 
wavenumber n is increased. 

We have also plotted neutral curves for Dean flow at various values of the azimuthal 
wavenumber in figure 2 6. It is observed that the critical Deborah number increases as 
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FIGURE 3. Neutral curves for Taylor-Dean flows when the velocity gradient due to the shearing 
by the cylinder rotation is positive (j? > 0): (a) S = 0.25, (b) S = 0.5, (c) S = 0.75. 

the azimuthal wavenumber IZ is increased. This indicates that the axisymmetric mode 
(n  = 0) is more unstable than any non-axisymmetric mode. The neutral stability curves 
for integer values of the azimuthal wavenumber are shown figure 2 b. It is also observed 
that the critical wavenumber monotonically increases as the azimuthal wavenumber is 
increased. Note that for Dean flow, the axisymmetric mode is a stationary one, while 
the non-axisymmetric modes are oscillatory. 

Neutral curves for Taylor-Dean flow at three different values of 6 are shown in figure 
3, when the shear rate due to the rotation of the cylinders is positive (p > 0). It is 
observed that when the shearing by the cylinder rotation is the dominant flow driving 
force (6 = 0.25, figure 3a), the stability characteristics are similar to those of 
Taylor-Couette flow : the critical Deborah number decreases first, and then increases 
as the azimuthal wavenumber n is increased. It is also observed that the critical 
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FIGURE 4. Neutral curves for Taylor-Dean flows when the velocity gradient due to the shearing 

by the cylinder rotation is negative (j3 < 0): (a) S* = 0.25, (b) S* = 0.75. 

wavenumber decreases as the azimuthal wavenumber is increased. On the other hand, 
the stability characteristics are similar to those of Dean flow, when the pressure 
gradient is dominant (6 = 0.75, figure 3c): both the critical Deborah number and the 
critical wavenumber increase as the azimuthal wavenumber is increased. When both 
flow-driving forces are comparable (6 = 0.5, figure 3 b), the critical Deborah number 
decreases first, and then increases, but the critical wavenumber only increases, as the 
azimuthal wavenumber is increased. In general, the critical Deborah number 
monotonically increases as 6 is increased, and thus the applied pressure gradient 
stabilizes the flow. 

In figure 4, we plot neutral curves for Taylor-Dean flow at two different values of 
6*, when the shear rate due to the rotation of the cylinders is negative (J < 0). It is 
shown that the non-axisymmetric mode is more unstable than the axisymmetric one 
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z =  0 

z = 0.125 

z = 0.25 

z = 0.375 

FIGURE 5. Time sequences of a possible travelling wave pattern at the onset of Taylor-Couette 
flow at S = 0.8, E = 0.133, p =  - 1 ,  TI = 1 ,  6 = 0. 

when the shearing is the dominant flow-driving force (6* = 0.25, figure 4a), while the 
axisymmetric mode is more unstable when the pressure gradient becomes dominant 
(6* = 0.75, figure 4b). Note that the critical Deborah number substantially increases 
first, and then decreases as 6* increased. The critical wavenumber and the critical 
Deborah number obtained from flow-visualization experiments will be compared with 
these theoretical predictions in 95. 
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2.3. Streamlines at the onset of instability 

In this section we examine the possible secondary vortex flow structures which are 
predicted from the linear analysis at the onset of the instability. The complex stream 
function corresponding to the non-axisymmetric disturbance flow in the (x, z)-plane is 
defined 

where + = i U/a.The real stream function of the growing mode which moves 'up' the 
coaxial cylinders becomes 

Y = +(x) exp i(az + n0-  wt), (19) 

{Uicos[2n(Z+nB-r)]+ U,sin[2n(Z+nB-r)]}. (20) q(1) = -- 1 
a 

In (20), we have rescaled the 2-coordinate and time, r, with the wavelength of the 
critical disturbance and the period of its oscillation, respectively. In figure 5, we have 
plotted time sequences of this possible travelling ' spiral' wave pattern for 
Taylor-Couette flow at 0 = 0. The left boundary of the graph represents the inner 
cylinder, and the right is the outer cylinder. As we can see in (20), there is equivalence 
between azimuthal variation (0) and time variation (0 in the vortex structure, and thus 
for n = 1 the four time sequences of the spirals at 8 = 0 shown in figure 5 are identical 
to the vortex structures at the four different azimuthal positions (0 = 0, 0 = 45", 
8 = 90", and 0 = 135", respectively) at r = 0. Meanwhile, there can be an equivalent 
mirror-image structure that moves spirally ' down' the coaxial cylinders, and the real 
stream function of this mode are: 

(21) 
1 q(') = --{ - Uicos[2n(Z-nB+r)]+ Ursin[2n(Z-n0+r)]>. 

Although nonlinear analysis is necessary to determine whether travelling ' spirals ' or 
standing 'ribbons ' (formed from the superposition of two counter-travelling spirals) 
are chosen, the real stream function for the standing wave pattern can be written as the 
sum of two stream functions, (20) and (21): 

a 

1 
= -- { Ui cos [2n(Z+ no - r)] + U, sin [2n(Z+ n0 - I)] 

a 

- Uicos[2n(Z-n8+r)]+ U,sin[2n(Z-n0+r)]>. (22) 

Time sequences of the standing wave pattern in the (x,z)-plane for the axisymmetric 
mode (n = 0) and for the non-axisymmetric mode (n = 1) in Taylor-Couette flow at 
8 = 0 are shown in figure 6. Since the critical wavenumber of the non-axisymmetric 
mode is smaller than that of the axisymmetric mode, the axial dimension of the vortex 
structure for the former is larger. It is shown that for the non-axisymmetric mode, the 
vortex is located near the outer cylinder, while it is symmetric about the centre of the 
gap for the axisymmetric mode. Again, owing to the equivalence between the 
azimuthal variation (0) and the time variation (r)  in the vortex structure, the four time 
sequences of the ribbons at 8 = 0 shown in figure 6(b)  are identical to the vortex 
structures at four different azimuthal positions (0 = 0, 8 = 45", 8 = 90°, and 8 = 135", 
respectively) at r = 0. Finally, we note that although these streamlines are for 
Taylor-Couette flow, no qualitative changes in the structures of the oscillatory non- 
axisymmetric mode were found in Taylor-Dean flow (see Joo 1993). The structures of 
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s = O  

z = 0.125 

z = 0.25 

z = 0.375 

FIGURE 6. Time sequences of streamlines at the onset of the instability in Taylor-Couette flow: (a) 
the axisymmetric mode (n = 0) at S = 0.8, E = 0.133, /3 = - 1; (b) the non-axisymmetric mode 
(n = 1) at E = 0.133, /3 = - 1 ,  0 = 0. 
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the axisymmetric modes in Taylor-Dean flow can be found in our previous publication 
(Joo & Shaqfeh 1992). 

2.4. Energy analysis : mechanism of instability 
2.4.1. Energy analysis 

Since our stability analysis predicts that certain non-axisymmetric modes are more 
unstable than the axisymmetric mode when the shearing by the cylinder rotation is the 
dominant flow driving force, we now investigate the mechanism of instability in purely 
elastic Taylor-Dean flow with respect to non-axisymmetric disturbances through an 
examination of the disturbance-energy equation. This energy method considers energy 
transfer between the mean flow and the disturbance flow by evaluating the mechanical 
energy balance for the system. We apply the same methodology as discussed in our 
previous publication (Joo & Shaqfeh 1992) where a detailed development of the energy 
equation can be found. The final dimensionless energy equation can be written (Joo & 
Shaqfeh 1992) : 

de 
= - + Deq5,. 

dt 

is the kinetic energy (per unit mass) of the disturbance, 

is the rate of Reynolds stress energy production, 

r 
$vis = J (V’v’) - v’ d V 

is the total rate of viscous energy dissipation (both by polymer and solvent) which is 
always negative, and e p  is the disturbance power created or dissipated by the action of 
the disturbance polymeric stresses : 

ep  = v’.V.~bdV. (27) s 
Finally, q5p represents the rate of energy production due to the elastic coupling between 
the perturbation flow and the base flow. This last term can be written 

(28) $ p  = $ P V l +  $P,2 + 4 p s .  

where 

is the rate of energy production caused by the coupling of the perturbation velocity and 
the base state polymeric stress gradient. Similarly, $,,, is the rate of energy production 
or dissipation caused by the coupling between the perturbation velocity gradient and 
the base state polymeric stresses: 



42 

The last term in (28) 

Y. L. Joo and E. S.  G. Shadeh 

q5ps = V -  [(VU’))’ .T; + T;-VU’] U‘ d P  (3 1) 

is the rate of the energy production caused by the coupling of the disturbance 
polymeric stresses to the base state velocity gradient. 

In the limit as Re+O, (23) is not useful for determining the rate of change of the 
kinetic energy disturbance, dE,/dt, because the kinetic energy and the energy 
production term due to Reynolds stresses $,,, are always vanishingly small relative to 
the energy production or dissipation created by the viscous or elastic stresses (i.e. the 
right-hand side of (23)). In this limit, if we consider the total rate of work done by the 
disturbance flow, 

s 

su’87‘dV= S (V2u’)-u’dl/+De v’.VTbdI/= 0, s s 
we obtain the following relation: 

Thus, de,/dt is the rate of change of the absolute value of the power dissipated by the 
solvent. Since one expects on physical grounds that as the perturbation velocity grows, 
more energy will be dissipated by the solvent, we expect the sign of de,/dt to indicate 
growth or decay in the magnitudes of the perturbation fields, and hence, instability 
or stability. To be more specific, the rate of change of the positive definite norm 
SOU’: Vu‘dP plays a role in the energy analysis of these stress-driven instabilities 
analogous to that u’.u’dP lays in the analysis of inertial instabilities. Note that by 
independently calculating u’ d P  our results show that (d/dt) 1 Vu’ : Vu’ dl/ is 
always of the same sign as (dldt) S u’ - u’ dV for these elastic instabilities (Joo & Shaqfeh 
1992). We thus have the following energy equation in the limit as Re+O: 

de 
= q5vis + De q5,, 

dt (34) 

We have reported that when the disturbance flow is axisymmetric, the mechanism 
for the elastic, stationary instability in Taylor-Dean flow is associated with the 
coupling of the perturbation velocity field to the polymeric normal stress gradients in 
the base flow (q5pu+ in the energy equation (34)), while the mechanism for the elastic, 
oscillatory instability in Taylor-Dean flow involves the coupling between the 
disturbance polymeric stresses and the base state velocity gradients (q5ps  in the energy 
equation (34)) (Joo & Shaqfeh 1992). Although the final energy equation (34) remains 
the same for the non-axisymmetric disturbances, the three energy production terms 
$pu l ,  $pv2 ,  and q5ps include additional terms which arise from the azimuthal variations 
of the disturbance flow. Thus, we are interested in how these new additional terms will 
make contributions to energy production or dissipation especially when the non- 
axisymmetric modes are more unstable than the axisymmetric mode. In the following 
discussion we concentrate exclusively on the energy balance for the two-dimensional 
circulation flow in the (x,z)-plane. As discussed elsewhere (Joo & Shaqfeh 1992), we 
have identified this balance as the key to understanding the mechanism of instability 
in these flows. 
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FIGURE 7. The terms in the energy equation (34) in Taylor-Couette flow (a) with respect to 

axisymmetric disturbances, and (b) with respect to non-axisymmetric disturbances. 

In figure 7 we have plotted the terms in the energy equation (34) over a given range 
of De (both sub- and supercritical values) for elastic Taylor-Couette flow both when 
the disturbance flow is axisymmetric (figure 7 a) and when it is non-axisymmetric 
(figure 7b). The energy production due to the coupling between the disturbance 
polymeric stresses and the base state velocity gradients $g is shown to be the 
mechanism in Taylor-Couette flow, if the disturbance flow is axisymmetric (Joo & 
Shaqfeh 1992). When the disturbance flow is non-axisymmetric, however, the same 
term q4Ei decreases, while a new contribution to the energy production caused by the 
azimuthal variation of the disturbance flow increases considerably as De passes 
the critical value 15.2 (see figure 7b).  Thus, this new contribution $;:n-axi appears to 
control the onset of instability in Taylor-Couette flow if the disturbance flow is non- 
axisymmetric. This indicates a new instability mechanism since $;in-axi is entirely 
absent when the disturbance flow is axisymmetric. Although there is a small additional 
coupling between the perturbation velocity gradient and the base state polymer stresses 
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FIGURE 8. The terms in the energy equation (34) in Dean flow (a) with respect to axisymmetric 
disturbances, and (b) with respect to non-axisymmetric disturbances. 

($;;t-azi) owing to the azimuthal variation of the disturbance flow, we find that the 
term $pv2  results only in a small energy dissipation for both axisymmetric and non- 
axisymmetric disturbances. 

In figure 8, we have platted the terms in (34) over a given range of De for elastic Dean 
flow both when the disturbance flow is axisymmetric (figure 8a)  and when it is non- 
axisymmetric (figure 8 b). When the disturbance flow is axisymmetric, the coupling of 
the perturbation velocity field to the polymeric normal stress gradients in the base flow 
#pv l  appears to control the onset of the instability, and there is no energy dissipation 
or production due to the coupling between the perturbation velocity gradient and the 
base state polymer stresses (#pv2 = 0). When the disturbance flow is non-axisymmetric, 
the same term $pvl  increases with increasing De through the critical value. We find that 
the azimuthal variation of the disturbance flow does not contribute to the coupling of 
the perturbation velocity field and the polymeric normal stress gradients in the base 
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FIGURE 9. The terms in the energy equation (34) in Taylor-Dean flow (a) with respect to non- 
axisymmetric disturbances, and (a) when the shearing by cylinder rotation is the dominant flow- 
driving force (8 = 0.25), and (b) when the azimuthal pressure gradient is dominant (8 = 0.75). 

flow q5p,vl. The additional terms due to the azimuthal variation of the disturbance flow 
q5:,n-ax' and q5;:: result only in small energy production and dissipation, 
respectively. 

Finally, we have plotted the terms in the energy equation (34) for Taylor-Dean flows 
in figure 9, when the disturbance flow is non-axisymmetric. When the shearing by the 
cylinder rotation is the dominant flow-driving force (6 = 0.25 in figure 9a), the terms 
in figure 9 (a) are similar to those calculated for Taylor-Couette flow : the contribution 
to the energy production 9::" axi tracks with the rate of change of the power created 
by the disturbance polymeric stresses de,/dt. The coupling of the perturbation velocity 
field to the polymeric normal stress gradients in the base flow q5pvl exists but is small 
compared to When the pressure gradient is the dominant flow driving force 
(8 = 0.75 in figure 9 b), the terms in figure 9 (b) are similar to those calculated for Dean 
flow: the energy production term q5pvl becomes dominant and tracks with dc,/dt. The 
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FIGURE 10. Mechanism of instability in Taylor-Couette flow with respect to axisymmetric 
disturbances: with no secondary flow, the base flow deflects a bead of an elastic dumb-bell from a to 
b. With a secondary radial flow, the dumb-bell is stretched in the radial direction, and the base flow 
then deflects the bead farther; i.e. from c to d (Larson et al. 1990). 

term becomes small, but increases as De passes the critical value 22.9, and the 
term q5pv2 again results in small energy dissipation. 

In conclusion, the additional coupling between the disturbance polymeric stresses 
and the base state velocity gradients due to the azimuthal variation of the disturbance 
flow controls the onset of Taylor-Dean flow instability with respect to non- 
axisymmetric disturbances, when the shearing by the cylinder rotation is the dominant 
flow driving force. As the azimuthal pressure gradient becomes dominant, this 
coupling becomes insignificant and the coupling of the perturbation velocity field to the 
polymeric normal stress gradients in the base flow controls the onset of instability. In 
the next subsection, we analyse the mechanism of instability to non-axisymmetric 
modes in Taylor-Dean flows and show that it arises from the interplay between the 
disturbance polymeric stresses due to the azimuthal variation of the disturbance flow 
and the base state velocity gradients. 

2.4.2. New mechanism of viscoelastic instability 
Based on the results of the energy analysis described above, a new mechanism for the 

viscoelastic Taylor-Couette flow instability with respect to non-axisymmetric dis- 
turbances has been discovered. It is associated with the coupling between the 
disturbance polymeric stress due to the azimuthal variation of the disturbance flow and 
the base state velocity gradient. To be more specific, the coupling between the gradient 
of the azimuthal velocity in the base state (av:/ar) and the perturbation shear stress 
(RB) creates an elastic ‘hoop’ stress 00, and this controls the onset of instability. It 
should be noted that the mechanism associated with axisymmetric disturbances in 
Taylor-Couette flow is also dependent on this coupling. However, when the 
disturbance flow is non-axisymmetric, the development of the perturbation shear stress 
RB in this coupling is very different from that associated with axisymmetric 
disturbances. In order to demonstrate the differences in the mechanism of instability 
in these two cases, we first recapitulate the mechanism associated with axisymmetric 
disturbances and then analyse the new mechanism of the Taylor-Couette flow 
instability with respect to non-axisymmetric disturbances. 

The mechanism of the instability can most easily be understood by referring to the 
dumb-bell model from which the Oldroyd-B constitutive equation is derived as 
described by Larson et al. (1990). For the axisymmetric disturbances, the radial 
extensional flow (aU/ar) stretches the dumb-bell in the r-direction (see figure 10). 
Owing to the base shearing flow, this additional stretching of the dumb-bell in the r- 
direction (e.g. increase in radial normal perturbation stress RR) causes the development 
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FIGURE 11. Mechanism of instability in Taylor-Couette flow with respect to non-axisymmetric 
disturbances: owing to its azimuthal variation, the radial perturbation velocity U deflects the beads 
of an elastic dumb-bell in the radial direction, which causes the development of perturbation shear 
stress RO. The development of perturbation shear stress couples to the base shearing flow to deflect 
the beads farther leading to an increased stretch of the dumb-bell in the azimuthal direction. 

of the perturbation shear stress RS. This development of the perturbation shear stress 
RO couples to the base shearing flow to produce an increased stretch of the dumb-bell 
in the azimuthal direction (i.e. increase in the hoop stress SO).  Because the streamlines 
are curvilinear, this elastic ‘hoop ’ stress reinforces the radial perturbation flow leading 
ultimately to a secondary toroidal vortex flow (see figure 10) (Larson et al. 1990). 

When the disturbance flow is non-axisymmetric, the development of the perturbation 
shear stress RO in the term q5ps occurs through a different pathway. First, the coupling 
between the radial perturbation velocity gradient in the azimuthal direction (a U/aO) 
and the azimuthal normal stress in the base state (T&) causes the development of the 
RO shear stress: the radial perturbation velocity U which varies along the azimuthal 
direction deflects the beads of an elastic dumb-bell in the radial direction (see figure 11). 
This deflection causes the perturbation shear stress RO to develop, and this development 
of the perturbation shear stress then couples to the base shearing flow to produce an 
increased stretch of the dumb-bell in the azimuthal direction (e.g. increase in the hoop 
stress 06) (see figure 11). It should be noted that the coupling of the azimuthal variation 
of the radial perturbation velocity to the azimuthal normal stress in the base state is 
crucial in the mechanism described above. 

As a constant azimuthal pressure gradient is added to Taylor-Couette flow to 
produce a Taylor-Dean flow, the average base state values of the azimuthal velocity 
gradient, a v i p r ,  and stress (shear (7f0) and azimuthal normal (T&)) made dimensionless 
with the product of the gap and the maximum shear rate across the gap decrease 
monotonically (Joo & Shaqfeh 1992). Therefore, the coupling described above and 
present in the term q5iin-axi decreases as the pressure gradient is increased. Finally, the 
mechanism described in figure 11 is suppressed by the coupling between the 
perturbation velocity field and the polymeric normal stress gradients in the base flow 
q5pvl, as the pressure gradient becomes the dominant flow driving force. 

3. The effects of the gap width 
If we relax the small-gap assumption, the linear stability equations governing small 

non-axisymmetric disturbances in the Taylor-Dean flow of an Oldroyd-B fluid are 
rather lengthy and cumbersome. These equations are given in the Appendix. For 
brevity, we shall only discuss the stability results with finite-gap width in elastic 
Taylor-Couette and Dean flows. The effects of finite gap are very similar in 
Taylor-Dean flows and are discussed elsewhere (see Joo 1993). First, the calculations 
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FIGURE 12. The critical Deborah numbers us. the gap ratio as predicted by the linear stability theory 
for Taylor-Couette flow at S = 0.79. (a) Theoretical predictions for both axisymmetric and non- 
axisymmetric modes are shown for the theory including finite-gap effects. . . . O .  . . , finite gap 
(axisymmetric); -.-, finite gap. De (non-axisymmetric); . . .O . . . , Mod. De (axisymmetric); 
-m- Mod. De (non-axisymmetric). (b) The data from Larson et al. (1990) are included. Note 
that two different experimental values of Deel based on two different polymer relaxation times are 
shown: the relaxation time determined from steady-state normal stresses was used for the lower value 
of Deer, and the relaxation time from relaxation of normal stresses after cessation of steady shear was 
used for the higher value of Deer. . . , finite gap (axisymmetric); 0, data 1 (PIB/PB Boger 
fluid); m, data 2 (PIB/PB Boger fluid); -, finite gap (non-axisymmetric). 

for Taylor-Couette flow are presented for gap ratios in the range 0 < E < 0.35 (figure 
12a). These are then compared with the experimental results by Larson et al. (1990) 
(figure 12b). We choose the value of S = y,/yt = 0.79 which corresponds to the 
PIB/PB boger fluid used in their experiments. In addition, again following the 
experiments of Larson et al. (1990), /? was set to - 1 which corresponds to the case 
when only the inner cylinder rotation drives the flow. A summary of the critical 
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Critical Critical 
Concentration shear rate Critical De Critical De De from 

(p.p.m.1 s = T,/(T, + ? I p )  (s-’) from A, from A, theory 

1000 0.8630 7.4 9.4 28 24.1 
2000 0.7368 2.8 8.9 27 18.9 
4000 0.6154 1.4 7.0 17 17.0 
6000 0.5000 0.9 7.2 17 16.3 

- - 0 > 46 - - 

TABLE 2.  Concentration dependence of the critical conditions for Taylor-Couette flow (p = - 1 ,  
E = 0.1, PS/PS/DOP Boger fluid). The critical Deborah numbers for the non-axisymmetric mode at 
four different values of S are compared with the experimental data by Shaqfeh et al. (1992). A,  and 
A, represent the polymer relaxation time from steady-state normal stresses and from relaxation of 
normal stresses after cessation of steady shear, respectively. 

Deborah numbers for both axisymmetric (n = 0) and non-axisymmetric (n  = 1) modes 
of the elastically-driven instability in Taylor-Couette flow is found in figure 12. For 
both axisymmetric and non-axisymmetric modes, the calculations with finite-gap width 
are shown in figure 12a. Beyond the small-gap limit, the shear rate ceases to be 
constant across the gap, and thus it is natural to define the Deborah number in the 
finite-gap calculations as the product of the fluid relaxation time h and the shear rate 
at the inner cylinder as has been done by Shaqfeh et al. (1992), namely 

21/31 (1 + E l 2  Ql De = j h  = 
(1 +e)2- 1 (35)  

The right-hand side of (35) is equal to the product of the constant shear rate across the 
gap and the polymer relaxation time in the limit of small gap. In figure 12(a) we have 
referred to the product eiDe as the modified Deborah number and we further note that 
this parameter plays the analogous role of the Taylor number in the centrifugally 
driven Newtonian instability (see Chandrasekar 1961 ; Drazin & Reid 1981). Figure 
12(a) demonstrates that, in terms of &De, finite-Fap effects are monotonically 
stabilizing, generally increasing the critical value of ezDe for both axisymmetric and 
non-axisymmetric modes. However, the rate of increase in eiDe with increasing gap is 
slower in the case of the non-axisymmetric mode. It should also be noted that the 
critical wavenumber increases as the gap ratio e is increased. 

In figure 12(b) we present the experimental data of Larson et al. (1990). Note that 
a polyisobutylene/polybutene/trichloroethylene Boger fluid was used in their 
experiments which is similar to that used in our experiments presented in $5 .  The two 
experimental values of Deer in figure 12(b) correspond to the values based on two 
different polymer relaxation times : the relaxation time determined from steady-state 
normal stresses was used for the lower value of Deer, and the relaxation time from 
relaxation of normal stresses after cessation of steady shear was used for the higher 
value of Deer. This difference in the polymer relaxation time has been discussed 
elsewhere (e.g. Magda & Larson 1988; Larson et al. 1990), and will be discussed in $4 
for our experimental fluids. It is observed that the theoretical predictions for the non- 
axisymmetric mode lie between these two experimental data. 

Meanwhile, the polymer concentration dependence of the critical conditions is 
shown in table 2,  where the critical Deborah numbers for the non-axisymmetric mode 
at four different values of S are compared with the experimental data using a 
PS/PS/DOP Boger fluid by Shaqfeh et al. (1992). It is found that the theoretical 
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FIGURE 13. The critical Deborah number us. the gap ratio as predicted by the linear stability analysis 
calculations for Dean flow at S = 0.79. Theoretical predictions for both axisymmetric and non- 
axisymmetric modes are shown in the limit of small gap and for the theory including finite-gap effects. 
. . '0. . . , finite gap (axisymmetric); . . . . . . , narrow gap (axisymmetric); ---.----, finite gap (non- 
axisymmetric); -, narrow gap (non-axisymmetric); . . . . . . , Mod De (axisymmetric); 
-.-, Mod De (non-axisymmetric). 

predictions are in good agreement with the experimental data when we base our 
comparison on the relaxation time measured from the relaxation of normal stresses 
after cessation of steady shear. 

In figure 13, the calculations for Dean flow are presented for the gap ratios in the 
range 0 < E d 0.5. The critical Deborah numbers for both axisymmetric (n = 0) and 
non-axisymmetric (n = 1) modes are shown, and the calculations with the finite-gap 
width are compared with those in the narrow-gap limit for both axisymmetric and non- 
axisymmetric modes. At a fixed gap ratio E ( E  > lo-'), the critical Deborah number of 
the axisymmetric mode is slightly lower than that of the non-axisymmetric mode in the 
narrow-gap limit. However, the calculations for a finite gap show that the critical Deer 
of the axisymmetric mode is in fact much lower than that of the non-axisymmetric 
mode at a fixed gap ratio. Thus, the axisymmetric mode is always significantly more 
unstable than the non-axisymmetric mode at a fixed geometry. Figure 13 also 
demonstrates that, in terms of &De, finite-gap effects are monotonically stabilizing, 
generally increasing the critical value of EiDe for both axisymmetric and non- 
axisymmetric modes. However, the rate of increase in EiDe with increasing gap is slower 
in the case of the axisymmetric mode. Note that as the gap becomes smaller ( E  + 0), the 
critical conditions EiDe approach each other for axisymmetric and non-axisymmetric 
modes. As we have previously discussed, this is due to the fact that the terms which 
differentiate the stability characteristics of the two different mode types are O(c2De3) 
and these approach zero like E; as E + 0, if $De - O( 1). It should also be noted that the 
critical wavenumber decreases as the gap ratio E is increased. 
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4. Experimental procedures 
4.1. Fluid preparation and characterization 

The highly elastic fluid used in the following experiments was a polybutylene/ 
polybutene ‘Boger fluid’; i.e. a small amount of a high molecular weight polymer 
dissolved in a viscous, Newtonian solvent. The high-molecular-weight species was a 
polyisobutylene with a weight average molecular weight of 4 to 6 million and a broad 
molecular weight distribution (Magda & Larson 1988; Larson et al. 1990). It was 
dissolved in trichloroethylene and this solution was added to a low molecular weight 
polybutene. The trichloroethylene was evaporated in a vacuum oven for four weeks. 
The final concentration of polyisobutylene in the solution was 1000 p.p.m. A very 
similar PIB/PB Boger fluid has been used in other viscoelastic flow experiments (e.g. 
Larson et al. 1990; McKinley, Byars & Brown 1991 a). 

The rheology of this Boger fluid was thoroughly characterized on the Rheometrics 
Dynamic Analyzer I1 rheometer. Throughout these experiments the temperature was 
maintained at 20.0k0.5 “C via a convection oven. The steady shear viscosity and 
primary normal stress coefficient measurements are presented in figure 14. These steady 
shear material functions show nearly Oldroyd-B behaviour in the range of shear rate : 
1 < i. < 10 s-’. We note that the shear rates in the Taylor-Dean experiments in 95 are 
well within this range (see figure 23 a and figure 24a). The total shear viscosity is about 
250 poise and !Pl is 600 dyne s2/cm2 in this shear rate range. The dynamic viscosity 7’ 
in small-amplitude oscillatory shearing is shown as a function of frequency in figure 15. 
For the Oldroyd-B model, we have 

and thus interpreting the data in terms of this model vs = 200 poise, vp  = 50 poise, and 
A = 6 s, respectively. The dynamic viscosity for an Oldroyd-B fluid given by the above 
expression is also plotted in figure 15. The experimental values for 7’ decrease more 
gradually with w than predicted: this is indicative of a broad spectrum of relaxation 
times in the polydisperse fluid, as discussed elsewhere (Larson et al. 1990; Quinzani 
et al. 1991). Since alternate measurements weight the various relaxation times in the 
spectrum differently, a different average value of the relaxation time can be obtained by 
fitting the Oldroyd-B model to other experimental measurements. A fit of the Oldroyd- 
B model to the relaxation of the normal force in a plate-and-plate or cone-and-plate 
measuring device gives a value of h z 13 s, which is about twice the value found from 
the steady-state normal stress measurement (see figure 16). This difference in the 
average relaxation time has been observed in other studies (e.g. Magda & Larson 1988; 
Larson et al. 1990). Magda & Larson (1988) found in their study of elastic instabilities 
in cone-and-plate and plate-and-plate flows that the value Decr based on the relaxation 
time measured in transient experiments was in much better agreement with the 
theoretical predictions than a similar comparison based on a relaxation time calculated 
from steady-state normal forces or normal stress differences. Larson et al. (1990) have 
also made similar observations in their study of elastic Taylor-Couette instabilities. 
Thus, we shall choose an average relaxation time based on the decay of the primary 
normal stress difference after cessation of steady shear to compare our theory with 
experiment. 

4.2. Taylor-Dean apparatus 
An apparatus was constructed to generate a spectrum of Taylor-Dean flows by placing 
a stationary, meridional obstruction between independently rotating, concentric 



52 Y.  L. Joo and E. S. G. Shaqfeh 

1 o6 

h 

% --. 105 

Z lo4 

s 

3 103 2 

k- lo2 

& 10' 

N 
v) 

Q) 

R 

n 

0 

W 
R 
W 

n 
2 
.3 

W 

r 

100 

Shear rate, y 

FIGURE 14. The steady shear viscosity 7, the first normal stress N ,  and the first normal stress 
coefficient !PI as a function of the shear rate y for the 1000 p.p.m. PIB/PB Boger fluid used in our 
experiments. - - -Up,  7; -0- N , ;  0 ,  !PI. 

cylinders. The inner cylinder radius, R, was 7.5 cm and the height of the inner cylinder 
was 20 cm. The outer cylinder has an inner radius of 8.5 cm, so that the dimensionless 
gap E = (R,-R,)/R, was equal to 0.133. While the cylinders are assumed to be 
infinitely long in the stability analysis in $2, the height to gap ratio of the apparatus is 
20. We note that this number is larger than the ratio of the inner cylinder radius to the 
gap, 7.5, and the finite-length effects have not been considered in this current study. 
The top of the cell is stationary, while the bottom moves with the outer cylinder, and 
the variation in the gap with the axial position was negligible. The block generates an 
azimuthal pressure gradient in opposition to the shearing flow as shown in figure 17(a). 
From the condition of material conservation across a given radial section in the 
apparatus, the azimuthal pressure gradient can be related to the rotation rates of inner 
and outer cylinders via the expression (see Joo 1993): 

Thus, for p > 0, we have the following expression for S in terms of the rotation rates 
of inner and outer cylinders: 

For p < 0, we have a similar expression for 6" 
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Therefore, counter-rotating the cylinders (52, = - 52,) generates Taylor-Couette flow 
(6 = 6" = 0, figure 17 b), while co-rotating the cylinders (52, = 0,) generates Dean flow 
(6 = 6* = 1, figure 17c). In addition, by changing the ratio of the rotation rate of the 
inner cylinder to the outer cylinder, a complete series of Taylor-Dean flows can be 
obtained. It should be noted that in the Dean flow generated in our apparatus, the 
maximum velocity occurs at the cylinders, while in the classical Dean flow it occurs at 
the centre of the gap (cf. figure 17c and figure 1 b). However, we shall not distinguish 
between these two flows, since the velocity gradient which plays a major role in elastic 
instabilities in curved streamlines is identical for both cases. It is found that the critical 
Deborah number and the critical wavenumber are the same no matter where the 
maximum velocity lies (or more specifically if we add an arbitrary constant azimuthal 
flow), while the frequency of oscillation for the non-axisymmetric modes varies slightly 
(see Joo 1993). 

4.3. Flow visualization and image analysis 
Flow visualization experiments and laser-Doppler velocimetry (LDV) measurements 
were performed in this flow cell in order to study the onset of flow instability. In our 
flow visualization experiments, mica flakes about 60 pm in length were suspended in 
the fluid; these plate-like particles reflect light in a manner that is highly dependent on 
their orientation so that their alignment by the flow results in variations in the reflected 
light intensity. The flow dynamics were recorded on videotape by using a high 
resolution video-camera. This video signal is sent to a Macintosh computer in which 
the image is digitized by a frame grabber card (Quicklmage, Mass Microsystems) at a 
rate of 1 frame per ks. In addition, an axial intensity profile can be obtained by 
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FIGURE 17. Taylor-Dean apparatus in which a stationary, meridional obstruction is placed between 
independently rotating, concentric cylinders to generate an azimuthal pressure gradient in opposition 
to the shearing flow. (a) Flow cell. (b) Taylor-Couette flow (counter-rotation). (c) Dean flow (co- 
rotation). 
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examining one pixel column of the digitized image. The wavenumber is then 
determined by taking a fast Fourier transform of the intensity profile. Thus, unlike 
previous flow-visualization experiments on elastic instabilities in which only qualitative 
information was obtained (e.g. Larson et al. 1990; McKinley et al. 1991 b),  this spectral 
image analysis provides a direct measure of the wavenumber. 

4.4. Laser-Doppler velocimetry 
The basic components of the LDV system are indicated schematically in figure 18. We 
used a two-beam, one-component system. The 514.5 nm green line of a 300 mW, 
Argon-Ion laser (Dantec Fiberflow system) is split, and the frequency of one of the split 
beams is then shifted by 40 MHz. The beams are subsequently manipulated by a series 
of transmitting optics and optical fibres. These two beams are directed through a final 
focusing lens which causes the beams to intersect at the lens focal point to form a 
measuring volume or ‘fringe pattern’. A particle moving with the fluid and passing 
through the measuring volume scatters light at a frequency that is Doppler-shifted 
relative to the incident light owing to the movement of the particle. The magnitude of 
the frequency shift is directly proportional to the tracer particle’s velocity and hence 
provides a non-invasive measure of the local fluid velocity. The measuring volume 
dimensions were 36 pm x 36 pm x 228 pm, with the long axis of the ellipsoidal volume 
lying along the optical axis of the system. Since each measurement is an average over 
this volume, these dimensions allow us to measure up to 27 data points across the gap 
between the cylinders. The scattered light is collected in the photomultiplier through 
the same lens used for the transmitting optics. The signal from the photomultiplier is 
sent to a spectrum analyser (Dantec 57N10). Finally, the output of the analyser is 
manipulated in our lab computer. This LDV system was used to measure the base state 
azimuthal velocity in Taylor-Dean flow. The root-mean-square of the velocity 
measurements at each point was less than 0.075 mm/s. This value is less than 3 % of 
the maximum velocity of the flow. It was also used to determine the frequency of the 
oscillation of the disturbance flow by measuring the axial velocity for a long period of 
time at super-critical flow conditions. 
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5. Experimental results 
First, in $5.1, we present the base state azimuthal velocity in Taylor-Dean flow 

obtained from our LDV measurements. These results demonstrate that our apparatus 
does produce the base velocity field as predicted by the theory at least when 
measurements are taken away from the vicinity of the block itself. Then, detailed flow 
visualization results following the flow transition are presented in $ 5.2. The critical 
wavenumber obtained from spectral image analysis, and the critical Deborah number 
are compared with the theoretical predictions for various ratios of the pressure 
gradient to shear flow driving force. Finally, in $5.3, we show the time-dependent LDV 
measurements of axial velocities at super-critical conditions. This determines whether 
the vortex flow at the onset of the Taylor-Dean instability is oscillatory. The 
comparison between experiments and the linear stability theory in $55.2 and 5.3 is 
made under the assumption that the transition to the nonlinear state is super-critical, 
so that the characteristics of the secondary flow are well described by the linear theory. 
Using the nonlinear analysis together with the LDV amplitude measurements, studies 
of the nonlinear effects on these elastic instabilities are currently underway to 
determine how nonlinearities influence characteristics of the secondary flow such as the 
saturation amplitudes and wavenumbers (Joo & Shaqfeh 1993). 

5.1. Base state velocity profiles 
The velocity field obtained by co-rotating the cylinders at the same velocity was 
measured at various azimuthal positions. The rotation speed of the inner and outer 
cylinders was slowly increased to a final velocity which was below that predicted to 
produce the viscoelastic instability. The results are shown in figure 19, where the 
azimuthal velocity is shown as a function of radial position. The results are in good 
agreement with the predictions of the Oldroyd-B model, shown as the solid curve in the 
figure. The error bars in figure 19 indicate the errors in the mean determined from a 
time series measurement taken at various points along the gap. The base flow is shown 
to be a purely azimuthal, steady, parabolic Dean flow except near the block. By 
changing the ratio of the rotation rate of the inner cylinder to the outer cylinder, the 
base state velocity fields of Taylor-Dean flows from Taylor-Couette flow to Dean flow 
were also measured at sub-critical conditions. Typical results are shown in figure 20 for 
various ratios of the pressure gradient to the shear driving force. The solid curves are 
again the predictions of the Oldroyd-B model, which gives base flows which are 
identical to those of a Newtonian fluid. The error bars in figure 20 again indicate the 
errors in the mean determined from a time series measurement taken at various points 
along the gap. The error between the predictions and the experiments are within 5.0 YO 
of the maximum velocity of the flow. It is not known at this time whether this 5 YO error 
is due to deficiencies in the Oldroyd-B model or lingering effects of the flow block. 
However, we believe this agreement is generally good and further experimental studies 
aimed at improving the accuracy of the LDV measurements are underway. 

5.2. Flow visualizations 
Flow visualization experiments were performed to determine the nature of the flow at 
the transition. A typical series of results of flow visualization and spectral image 
analysis for the elastic Dean flow instability is shown in figures 21-22. At a Deborah 
number of approximately 33, the velocity field for Dean flow undergoes a transition 
from the steady, purely azimuthal flow to secondary vortex flow. Figure 21 (a) is the 
digitized image of Dean flow near the onset of the instability, which shows the 
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FIGURE 19. The base state azimuthal velocity us. radial position in Dean flow at various azimuthal 
angles (a) 0 = 15", (h) B = 45", (c) B = 90°, (d) B = 270". The symbols are data obtained from LDV 
measurements, and the lines are the predictions of the Oldroyd-B model. The error bars indicate the 
errors in the mean determined from a time series measurement taken at various points along the gap. 

development of evenly spaced, banded vortex structures. These elastic vortices evolve 
into finer cells as time progresses (see figure 21 b). A similar time evolution of the elastic 
vortices has been observed in studies of the elastic instabilities in Taylor-Couette flow. 
These observations include studies by Larson et al. (1990) and Shaqfeh et al. (1992). 
It is important to note that the linear stability theory predicts a very shallow minimum 
in the plot of the critical Deborah number versus CL for both flows (see figure 2). Thus, 
above the critical condition, we might expect a range of wavenumbers to become 
unstable, and a multiple wavelength pattern may thus emerge. Note that in a later 
publication, we shall examine the nonlinear effects on these elastic vortices as well as 
the interaction of unstable modes and their harmonics (Joo & Shaqfeh 1993). 

The intensity profile along the axial direction and the power spectrum of its fast 
Fourier transform are shown in figure 21 again at the onset of the Dean instability. The 
intensity profile was obtained by taking one pixel column of the digitized image (figure 
21a) and plotting the pixel intensity along the axial coordinate. The intensity was 
normalized with the maximum number of the gray scale (256 gray scales). The peaks 
in the intensity profile represent the bright bands, and the minima represent the dark 
regions. Since plate-like mica flakes reflect light depending on their orientation, the 
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20. The base state azimuthal velocity c 

dark region represents the area in which the mica flakes are oriented perpendicular to 
the outer cylinder, while a bright region indicates that they are oriented parallel to the 
outer cylinder. Thus, two vortices are formed between two dark bands. The critical 
wavenumber obtained from this spectral image analysis is in good agreement with the 
theoretical value shown in the figure. 

In a similar manner, we obtain the critical wavenumber and the critical Deborah 
number for a host of Taylor-Dean flows created by varying the ratios of the pressure 
gradient to the shearing driving force by changing the relative cylinder rotation speed. 
In figure 23, we have plotted both experimental and theoretical values of the critical 
Deborah number and the critical wavenumber for all 

0 < 8 = (352, + 30,)/(252, +452,) < 1, 

when the shear rate due to the cylinder rotation is positive (p > 0). It should be 
noted that we have plotted predictions for the most unstable mode, whether it is 
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FIGURE 21. Flow visualizations in Dean flow (a) shortly after the onset of the secondary flow, and 
(b) after later development. 

oscillatory or stationary, or whether it is axisymmetric or non-axisymmetric. As 
previously presented, there is a purely elastic instability in Dean flow (6 = 1) which is 
a stationary, axisymmetric mode, while there is an oscillatory, non-axisymmetric 
instability in Taylor-Couette flow (S = 0). Both experimental and theoretical values of 
the critical Deborah number monotonicially increase, as S is increased from 6 = 0 to 
6 = 1 (see figure 23a). However, the experimental values from flow visualizations are 
higher than the theoretical predictions. It should be noted that critical conditions were 
always at shear rates within apparent Oldroyd-B behaviour (cf. figure 23a). The critical 
wavenumber is predicted to remain almost constant, while the critical wavenumber 
obtained from this spectral image analysis increases slightly and then decreases, as 6 
increased (see figure 23 b). 

When the shear rate due to the cylinder rotation is negative (/3 < 0), the stability 
characteristics are found to be significantly different from those when it is positive 
@? > 0). Both experimental and theoretical values of the critical Deborah number and 
the critical wavenumber for all 0 < S* = (352, + 352,)/(452, + 252,) < 1 are shown in 
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figure 24. The limiting cases, 6" = 0 and 6* = 1 correspond to Taylor-Couette flow and 
Dean flow, respectively. When an azimuthal pressure gradient is added to 
Taylor-Couette flow, it increases both theoretical and measured critical Deborah 
number while also increasing the critical wavenumber (see figure 23 a). Moreover, 
adding shearing due to cylinder rotation to Dean flow also increases both the 
experimental and the theoretical values of the critical Deborah number and the critical 
wavenumber. When 6* is near 0.40.6, the eigenvalue problem was found to be very 
stiff owing to the large values of the wavenumber and the Deborah number near the 
stability boundary, and for obtaining precise values of the critical conditions, one must 
either use an alternative numerical method or employ a large wavenumber analysis. In 
the same region, experimental data show no evidence of the flow instability throughout 
the range of Deborah number investigated. 

Although there is a quantitative discrepancy between data and theory, the qualitative 
trends in the data are in agreement with our theoretical predictions. One might not 
expect quantitative agreement when one notes that only periodic disturbances in the 
azimuthal direction are considered in the linear stability analysis in 52 while in the 
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experiments the disturbances are not periodic in the azimuthal direction owing to the 
existence of the block. In addition, the fluid used is characterized by a spectrum of 
timescales rather than a single relaxation time (cf. figure 15). Finally, it should be noted 
that, although we did observe a non-axisymmetric vortex flow in some flow- 
visualization experiments in the range 8 < 0.5 (see Joo 1993), it was difficult to analyse 
owing to the time evolution of the vortices into finer cells. The equally-banded vortex 
structures were not found to be stabilized for all flows throughout the range 
investigated. They lasted less than a few seconds, and then evolved into finer structures 
over several hundreds seconds. This is very similar to the nonlinear development 
reported by Larson et al. (1990), and no explanation for this nonlinear development is 
available at this time. 

3 F L M  262 
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gradient due to the shearing by the cylinder rotation is negative (J < 0) (a) De, us. S*, and (b )  a., us. 
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5.3. Time dependent L D V  measurements of the axial velocity 
Laser-Doppler velocimetry was employed to determine the frequency of the oscillation 
of the disturbances after flow transition. When the velocity undergoes the transition 
from steady, purely azimuthal flow to a secondary vortex flow, both new axial and 
radial components of the velocity develop. The axial velocity at a fixed position 
( x  = g) was measured as a function of time using LDV. The linear stability results 
predict that the non-axisymmetric, oscillatory mode is more unstable than the 
axisymmetric one when the shearing by the cylinder rotation is the dominant flow- 
driving force, while the axisymmetric, stationary mode is more unstable when the 
pressure gradient becomes dominant. Experimentally, it was difficult to make 
measurements of time-dependent flows near Deer with good accuracy, because the 



Observations of purely elastic instabilities 63 

0 20 40 60 80 

Time (s) (b) 
2 0 ~  10-~  

10 

0 O i l  0.2 0.3 0.4 0.5 0.6 0.7 

Frequency (Hz) 

FIGURE 25. (a) A time-dependent measurement of the axial velocity at De = 31 when only the 
inner cylinder drives Taylor-Couette flow (,4 = - l), and (b) its FFT. 

amplitude of the oscillation was very low. Thus, throughout the following time 
dependent measurements of the axial velocity, the data were obtained at a Deborah 
number which was from 25 YO to 65 YO above the critical values predicted by the theory 
in each case. This 25% to 65% above the critical is high, but signal to noise in the 
amplitude measurements requires it, and we do not know whether the linear stability 
predictions are good under these supercritical conditions. For the same reason, another 
well-characterized PIB/PB Boger fluid with a lower relaxation time h = 7 s was used 
(thus increasing the flow velocity at the critical conditions), and the rheological 
behaviour of this fluid can be found elsewhere (Joo 1993). 

First, the axial velocity in two Taylor-Couette flows with different values of p was 
measured at De = 31 which was 65 YO above the critical. Figure 24 presents the time- 

3-2 
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FIGURE 26. (a) A time-dependent measurement of the axial velocity at De = 31 when only the 
outer cylinder drives Taylor-Couette flow (j3 = a), and (b) its FFT. 

dependent measurement of the axial velocity and the power spectrum of its fast Fourier 
transform (FFT), when the outer cylinder was held stationary with the inner one 
rotating (j3 = - 1). The axial velocity shows a clear oscillation and the frequency of this 
oscillation is f, = 0.07 Hz. Although this frequency was measured at a fixed radial 
position (x = :), it was also found that the same oscillation, but with different 
amplitude appears throughout the flow field. The frequency made dimensionless with 
the polymer relaxation time is is = 2xAh = 3. Although this value is much larger than 
the theoretical prediction of the most unstable mode 0.1, it is consistent with the value 
3.1 obtained by Muller, Shaqfeh & Larson (1993) under similar experimental 
conditions. However, it is important to note that under these supercritical conditions, 
not only the most unstable mode (n = 1) but also other modes (n = 2, n = 0, y1 = 3 and 
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FIGURE 27. (a) A time-dependent measurement of the axial velocity for Dean flow at De = 41, 
and (b) its FFT. 

n = 4) are unstable. As shown in table 1, the theoretical predictions of the frequency 
of oscillation for these modes are 0.632, 0.779, 1.21, and 1.57, respectively, and yet the 
frequency we obtained from the LDV measurement does not appear to correspond to 
any of these frequencies. Figure 25 shows the axial velocity and FFT, when 
Taylor-Couette flow was driven by rotation of the outer cylinder only @ = a). The 
axial velocity also shows a clear oscillation, but the frequency of this oscillation is 
f, = 0.13 which is different from the frequencyfi = 0.07 when only the inner cylinder 
drives Taylor-Couette flow. We note that different frequencies were obtained in two 
Taylor-Couette flow experiments at different values of /?, but at the same value of De 
(i.e. the rotation speed of the outer cylinder for /? = co was the same as that of the inner 
cylinder for /? = - 1). The dimensionless frequency o is about 5.7 which is, again, larger 
than the theoretical prediction of the most unstable mode (1.97). However, again a 
number of modes are unstable at these conditions and the theoretical predictions of the 
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FIGURE 28. (a) A time-dependent measurement of the axial velocity for Taylor-Dean flow at 
De = 24 (6 = 0.25), and (b) its FFT. 

frequency of oscillation for the other unstable modes (n = 2, n = 0, n = 3 and n = 4) 
are 3.753, 0.779, 6.89 and 12.58, respectively. If we insert the frequencies from two 
Taylor-Couette flow experiments in (18), the azimuthal wavenumber n can be 
determined. Our linear stability analysis predicts that the non-axisymmetric mode with 
n = 1 is the most unstable mode, while the azimuthal wavenumber from (18) n w 2. 
Despite the inability of linear analysis to predict the frequency precisely under these 
supercritical conditions, the difference in the frequency of oscillation between the two 
Taylor-Couette flow experiments at different values of /3 suggests that the instability 
in Taylor-Couette flow may be a non-axisymmetric mode. 

The axial velocity in Dean flow at De = 41, which was 25 % above the critical, is 
shown in figure 26(a), and it does not appear to show a time-dependent behaviour. The 
corresponding FFT shown in figure 26(b) also indicates that the purely elastic 
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FIGURE 29. (a) A long dependent measurement of the axial velocity for Taylor-Dean flow at 
De = 33 (8 = 0.75), and (b) its FFT. 

instability in Dean flow is a stationary mode. In addition, this suggests that the Dean 
flow instability is the stationary, axisymmetric mode discussed previously, rather than 
the oscillatory, non-axisymmetric modes. 

Figures 27 and 28 present the axial velocity data at a Deborah number which was 
25% above the critical in each case and the FFTs for Taylor-Dean flow at two 
different values of 6. For 6 = 0.25, the axial velocity and its FFT show a time- 
dependent behaviour, and the frequency of the oscillation isfs=o,25 = 0.05 (see figure 
27). This result demonstrates that the instability in Taylor-Dean flow is an oscillatory 
mode, when the shearing by the cylinder rotation is the dominant flow-driving force. 
On the other hand, when the pressure gradient is dominant (6 = 0.75), the axial 
velocity and its FFT does not show any oscillation, which suggests that the instability 
is an axisymmetric, stationary mode. 
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In summary, our flow-visualization experiments and LDV measurements are 
consistent with the theoretical predictions that the non-axisymmetric, oscillatory mode 
is more unstable than the axisymmetric one when the shearing by the cylinder rotation 
is the dominant flow-driving force, while an axisymmetric, stationary mode is more 
unstable when the pressure gradient becomes dominant. 

6. Summary and conclusion 
We have presented theoretical and experimental results that demonstrate the 

existence of purely elastic instabilities in viscoelastic flows between rotating cylinders 
with an azimuthal pressure gradient acting around cylinders. First, the linear stability 
of the Taylor-Dean flow of an Oldroyd-B model fluid with respect to non-axisymmetric 
disturbances was considered. These results showed that certain non-axisymmetric 
modes are more unstable than the axisymmetric one when the shearing by the cylinder 
rotation is the dominant flow-driving force, while the axisymmetric mode is more 
unstable when the pressure gradient becomes dominant. The structure of the non- 
axisymmetric vortex flow at the onset of the Taylor-Couette flow instability was also 
shown. Furthermore, we investigated the mechanism of purely elastic Taylor-Dean 
instability with respect to non-axisymmetric disturbances through an examination of 
the disturbance-energy equation. It is found that the mechanism of the elastic 
Taylor-Dean instability is associated with the coupling between the disturbance 
polymeric stresses and the base state velocity gradients owing to the azimuthal 
variation of the disturbance flow. Experimental evidence of non-inertial, cellular 
instabilities in this Taylor-Dean flow of a well-characterized polyisobutylene/ 
polybutene Boger fluid was then presented. Flow-visualization experiments near the 
critical conditions show the transition from purely azimuthal flows to secondary vortex 
flows, and the development of evenly spaced, banded vortex structures. The critical 
wavenumber obtained from spectral image analysis, and the critical Deborah number 
are presented for various ratios of the pressure gradient to the shearing driving force. 
These experimental results were shown to be in good agreement with the theoretical 
predictions. In addition, laser-Doppler velocimetry (LDV) measurements showed that 
the instability is a stationary mode when the pressure gradient becomes the dominant 
flow-driving force, while it is an oscillatory instability when the shearing is dominant. 
The difference in the frequency of oscillation between the two Taylor-Couette flow 
experiments at different values of p suggests that the instability in Taylor-Couette flow 
may be a non-axisymmetric mode. However, the theory is unable to predict the 
frequency of oscillation witnessed in the experiment. We can suggest no explanation 
for this discrepancy at this time. 

The observation of different relaxation times, and the discrepancy in the comparison 
of the frequency of the oscillation between our experimental results and the theoretical 
predictions, however, suggest that the complex dynamics of Taylor-Dean flow may not 
easily be described by a constitutive model which includes only a single relaxation time, 
and that any prediction of the complex time-dependent nature of the instability may 
require a nonlinear analysis. 
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Appendix. The linear stability equations for non-axisymmetric 
disturbances in Taylor-Dean flow 

In this Appendix, the linear stability equations for non-axisymmetric disturbances in 
Taylor-Dean flow are given including full finite-gap effects. With Cauchy's equations 
of motion, the Oldroyd-B constitutive equation, and the boundary conditions, the 
velocity distribution describing the basic flow can be written as the sum of two terms: 
a simple shearing flow due to the cylinder rotation, and a Poiseuille flow due to the 
azimuthal pressure gradient, 

vo ~ - ~ , ~ , ( ~ [ ( l + E x ) l n [ ~ , ( l + t . x ) l  - 

1 
I} (A 1) 

+"(1 1 ) -  11(1 + E X )  - (1 + E X ) 2 p  

((1 +EX)'( ,!?+ 1)- 1)(1 + E X )  

[(l +EX) ' -  11 
(1 +Ex)21n(1 + E X )  

+[(l+EX)"l](l+EX) 
+ 

(1 +&X)2-1 [(l + & X ) 2 -  1](1 + E X )  ' 

where < = - (aP/M)  d2/27, R; a,, ,8 = (a, - O,)/R,, and x = ( r  - R1)/ (Rz  - R,) is the 
gap variable. For /3 > 0, we have the following dimensionless expression of the velocity 
gradient (made dimensionless with the product of the gap d and the shear rate at the 
outer cylinder) : 

where 8= c/(c+,!?). In the narrow-gap limit E < 1, the relative importance of the 
pressure gradient to the cylinder rotation as flow driving force, 

- < 2(1+~x) ' l n ( l+~)  
5=( E (l+EX)'-l - I ) ,  

and the dimensionless relative rotation rate p = 2( 1 + ~ ) ~ / 2  + E p become fs  and p, 
respectively. Thus, 6 becomes 6 (cf. (2)) in the narrow-gap limit. 

For ,!? < 0, we have a similar expression for the velocity gradient (made dimensionless 
with the product of the gap d and the shear rate at the inner cylinder): 

(A 3) 
(1 -(1 +EX)2)(1-(1+&)2) 8*-1 

2 ( 1 + ~ ) ~ I n ( 1 + ~ ) - ~ ( 2 + ~ )  I +   EX)" 
- -  

where 6* = [/([-@). Again, 6* becomes 6* (cf. (3)) in the narrow-gap limit. 

Taylor-Dean flow of an Oldroyd-B fluid becomes : 
The final stability problem governing small non-axisymmetric disturbances for the 

V"-a'V= a, U"'+a2 U"+a, U'+a, U+a, V"+a, V'+a, V,  (A 4) 

(A 5)  

V = U = U ' = O  at x=O, x = l ,  (A 6) 

U""-2a2U"+a4U= b, U"'+b, U"+b, U'+b4 U+b, V"'+b, V + b ,  V + b ,  V,  

in& 
a, = 

a'( 1 + E X )  ' 
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The Deborah number in the equations above is defined as the product of the fluid 
relaxation time h and the shear rate at the cylinders: 

(A 23) 
5 2 - -  

De = ‘ ( [ - , !?)A and for ,!? < 0. 
& 

In addition, the primes refer to derivatives with respect to the gap variable x, and 
2 = 1 /( 1 - irs + &in Dev:). In the narrow-gap limit E < 1, the eigenvalue equations (A 4) 
and (A 5) become (10) and (1 1). 
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